Product Code Database
Example Keywords: stocking -the $63-197
   » » Wiki: Greek Fire
Tag Wiki 'Greek Fire'.
Tag

Greek fire was an incendiary weapon system used by the from the seventh to the fourteenth centuries. The recipe for Greek fire was a closely-guarded state secret; historians have variously speculated that it was based on saltpeter, , or , but most modern scholars agree that it was based on mixed with , comparable in composition to modern . Byzantine sailors would toss loaded with Greek fire onto enemy ships or spray it from tubes. Its ability to burn on water made it an effective and destructive naval incendiary weapon, and rival powers tried unsuccessfully to copy the material.


Name
Usage of the term "Greek fire" has been general in English and most other languages since the Crusades. Original Byzantine sources called the substance a variety of names, such as "sea fire" (: πῦρ θαλάσσιον ), "Roman fire" (πῦρ ῥωμαϊκόν ), "war fire" (πολεμικὸν πῦρ ), "liquid fire" (ὑγρὸν πῦρ ), "sticky fire" (πῦρ κολλητικόν ), or "manufactured fire" (πῦρ σκευαστόν ).


History
Incendiary and flaming weapons were used in warfare for centuries before Greek fire was invented. They included sulfur-, -, and -based mixtures. Incendiary arrows and pots or small pouches containing combustible substances surrounded by or spikes, or launched by , were used in the Greco-Roman world. mentions that in the siege of Delium in 424 BC a long tube on wheels was used which blew flames forward using a large .Thuc. 4.100.1 The Graeco-Roman treatise Kestoi, compiled in the late 2nd or early 3rd century AD and traditionally ascribed to Julius Africanus, records a mixture that ignited from adequate heat and intense sunlight, used in grenades or night attacks:

In naval warfare, the Byzantine emperor Anastasius I () is recorded by chronicler to have been advised by a philosopher from called Proclus to use sulfur to burn the ships of the rebel general Vitalian.

Greek fire proper was developed in and is ascribed by the chronicler Theophanes the Confessor to Kallinikos (Latinized Callinicus), a Jewish architect from Heliopolis, in Syria, by then overrun by the Muslim conquests:

The accuracy and exact chronology of this account is open to question: elsewhere, Theophanes reports the use of fire-carrying ships equipped with nozzles (siphōn) by the Byzantines a couple of years before the supposed arrival of Kallinikos at Constantinople. If this is not due to chronological confusion of the events of the siege, it may suggest that Kallinikos introduced an improved version of an established weapon. The historian James Partington thinks it likely that Greek fire was not the creation of any single person but "invented by chemists in Constantinople who had inherited the discoveries of the chemical school". The 11th-century chronicler records that Kallinikos came from Heliopolis in Egypt, but most scholars reject this as an error. Kedrenos also records the story, considered implausible by modern scholars, that Kallinikos' descendants, a family called Lampros, "brilliant", kept the secret of the fire's manufacture and continued doing so to Kedrenos' time.

Kallinikos' development of Greek fire came at a critical moment in the Byzantine Empire's history: weakened by its long wars with Sassanid Persia, the Byzantines had been unable to effectively resist the onslaught of the Muslim conquests. Within a generation, Syria, Palestine, and Egypt had fallen to the Arabs, who in set out to conquer the imperial capital of . Greek fire was used to great effect against the Muslim fleets, helping to repel the Muslims at the first and second Arab sieges of the city. Records of its use in later naval battles against the are more sporadic, but it secured victories during the Byzantine expansion in the late 9th and early 10th centuries. Use of the substance was prominent in Byzantine civil wars, chiefly the revolt of the thematic fleets in 727 and the large-scale rebellion led by Thomas the Slav in 821–823. In both cases, the rebel fleets were defeated by the Constantinople-based central Imperial fleet through the use of Greek fire. The Byzantines also used the weapon to devastating effect against the various Rus' raids on the , especially those of 941 and 1043, as well as during the Bulgarian war of 970–971, when the fire-carrying Byzantine ships blockaded the Danube.

The importance placed on Greek fire during the Empire's struggle against the Arabs led to its discovery being ascribed to divine intervention. The Emperor (), in his book De Administrando Imperio, admonishes his son and heir, (), never to reveal the secrets of its composition, as it was "shown and revealed by an angel to the great and holy first Christian emperor " and that the angel bound him "not to prepare this fire but for Christians, and only in the imperial city". As a warning, he adds that one official, who was bribed into handing some of it over to the Empire's enemies, was struck down by a "flame from heaven" as he was about to enter a church. As the latter incident demonstrates, the Byzantines could not avoid capture of their secret weapon: the Arabs captured at least one fireship intact in 827, and the Bulgars captured several siphōns and much of the substance itself in 812/814. This was apparently not enough to allow their enemies to copy it (see below). The Arabs used various incendiary substances similar to the Byzantine weapon, but were never able to copy the Byzantine method of deployment by siphōn, and used catapults and grenades instead.

Greek fire continued to be mentioned during the 12th century, and gives a vivid description of its use in a naval battle against the in 1099. The use of hastily improvised is mentioned during the 1203 siege of Constantinople by the , but no report confirms the use of Greek fire. This might be because of the general disarmament of the Empire in the 20 years leading up to the sacking, or because the Byzantines had lost access to the areas where the primary ingredients were to be found, or even perhaps because the secret had been lost over time.

Records of a 13th-century use of "Greek fire" by the Saracens against the Crusaders can be read through the Memoirs of the Lord of Joinville during the . One description of the memoir says "the tail of fire that trailed behind it was as big as a great spear; and it made such a noise as it came, that it sounded like the thunder of heaven. It looked like a dragon flying through the air. Such a bright light did it cast, that one could see all over the camp as though it were day, by reason of the great mass of fire, and the brilliance of the light that it shed."

In the 19th century, it is reported that an called Kavafian approached the government of the with a new type of Greek fire he claimed to have developed. Kavafian refused to reveal its composition when asked by the government, insisting that he be placed in command of its use during naval engagements. Not long after this, he was poisoned by imperial authorities, without their ever having found out his secret. . "Հայոց դերը Օսմանյան կայսրության մեջ" The. Banber Erevani Hamalsarani 1967; trans. in Charles Issawi, The Economic History of Turkey, 1800–1914, Chicago: University of Chicago Press, 1980, p. 64.


Manufacture

General characteristics
As Constantine Porphyrogennetos' warnings show, the ingredients and the processes of manufacture and deployment of Greek fire were carefully guarded military secrets. So strict was the secrecy that the composition of Greek fire was lost forever and remains a source of speculation. The mystery of the formula has long dominated the research into Greek fire. Despite this almost exclusive focus, Greek fire is best understood as a complete weapon system of many components, all of which were needed to operate together to render it effective. This comprised not only the formula of its composition, but also the specialized ships that carried it into battle, the device used to prepare the substance by heating and pressurizing it, the siphōn projecting it, and the special training of the siphōnarioi who used it. Knowledge of the whole system was highly compartmentalised, with operators and technicians aware of the secrets of only one component, ensuring that no enemy could gain knowledge of it in its entirety. This accounts for the fact that when the Bulgarians took and in 814, they captured 36 siphōns and even quantities of the substance itself, but were unable to make any use of them.

The information available on Greek fire is indirect, based on references in the Byzantine military manuals and secondary historical sources such as and Western European chroniclers, which are often inaccurate. In her , Anna Komnene provides a description of an incendiary weapon, which was used by the Byzantine garrison of in 1108 against the . It is often regarded as an at least partial "recipe" for Greek fire:Scott, James Sibbald David (1868). The British army: its origin, progress, and equipment. p. 190.

At the same time, the reports by Western chroniclers of the famed ignis graecus are largely unreliable, since they apply the name to all incendiary substances.

In attempting to reconstruct the Greek fire system, the evidence from the contemporary literary references provides the following characteristics:

  • It burned on water; according to some interpretations it was ignited by water. Numerous writers testify that it could be extinguished only by a few substances, such as sand, strong vinegar, or old urine, some presumably by a sort of chemical reaction.
  • It was a liquid substance – not some sort of projectile – as verified both by descriptions and the name "liquid fire".
  • At sea it was usually ejected from a siphōn, but earthenware pots or grenades filled with it – or similar substances – were also used.
  • The discharge of Greek fire was accompanied by "thunder" and "much smoke".Leo VI, Tactica, XIX.59, transl. in


Theories on composition
The first and, for a long time, most popular theory regarding the composition of Greek fire held that its chief ingredient was saltpeter, making it an early form of . This argument was based on the "thunder and smoke" description, as well as on the distance the flame could be projected from the siphōn, which suggested an explosive discharge. From the times of , several scholars adhered to this position, most notably the so-called "French school" during the 19th century, which included chemist Marcellin Berthelot.

This view has subsequently been rejected, since saltpeter does not appear to have been used in warfare in Europe or the Middle East before the 13th century, and is absent from the accounts of the Muslim writers – the foremost chemists of the early world – before the same period. In addition, the behavior of the suggested mixture would have been very different from the siphōn-projected substance described by Byzantine sources.

A second view, based on the fact that Greek fire was inextinguishable by water (some sources suggest that water intensified the flames), suggested that its destructive power was the result of the explosive reaction between water and . Although quicklime was known and used by the Byzantines and the Arabs in warfare, the theory is refuted by literary and empirical evidence. A quicklime-based substance would have to come in contact with water to ignite, while Emperor Leo's Tactica indicates that Greek fire was often poured directly onto the decks of enemy ships,Leo VI, Tactica, XIX.67, transl. in although admittedly, decks were kept wet due to lack of sealants. Likewise, Leo describes the use of grenades,Leo VI, Tactica, XIX.63, transl. in which further reinforces the view that contact with water was not necessary for the substance's ignition. Zenghelis (1932) pointed out that, based on experiments, the result of the water–quicklime reaction would be negligible in the open sea.

Another similar proposition suggested that Kallinikos had discovered calcium phosphide, which can be made by boiling bones in urine in a sealed vessel. (1992), The New Penguin Atlas of Medieval History, New York: Penguin. On contact with water it releases , which ignites spontaneously. Extensive experiments with calcium phosphide also failed to reproduce the described intensity of Greek fire.

Consequently, although the presence of either quicklime or saltpeter in the mixture cannot be entirely excluded, they were not the primary ingredient. Most modern scholars agree that Greek fire was based on either crude or refined , comparable to modern . The Byzantines had easy access to crude oil from the naturally occurring wells around the (e.g., the wells around noted by Constantine Porphyrogennetos) or in various locations throughout the Middle East. An alternate name for Greek fire was " fire" (μηδικὸν πῦρ), and the 6th-century historian records that crude oil, called "" (in Greek: νάφθα náphtha, from 𐎴𐎳𐎫]] naft) by the Persians, was known to the Greeks as "Median oil" (μηδικὸν ἔλαιον).Procopius, De bello Gothico, IV.11.36, cited in This seems to corroborate the availability of naphtha as a basic ingredient of Greek fire.

Naphtha was also used by the in the 9th century, with special troops, the naffāṭūn, who wore thick protective suits and used small copper vessels containing burning oil, which they threw onto the enemy troops. There is also a surviving 9th-century text, preserved at Wolfenbüttel in Germany, which mentions the ingredients of what appears to be Greek fire and the operation of the siphōns used to project it. Although the text contains some inaccuracies, it identifies the main component as naphtha. were probably added as a thickener (the Praecepta Militaria refer to the substance as πῦρ κολλητικόν, "sticky fire"), and to increase the duration and intensity of the flame. A modern theoretical concoction included the use of and animal fat.

A 12th-century treatise prepared by Mardi bin Ali al-Tarsusi for records an Arab version of Greek fire, called naft, which also had a petroleum base, with and various resins added. Any direct relation with the Byzantine formula is unlikely. An recipe from the 16th century has been recorded for recreational use; it includes charcoal from a willow tree, saltpeter (sale ardente), alcohol, sulfur, incense, tar (pegola), wool, and ; the concoction was guaranteed to "burn under water" and to be "beautiful".


Methods of deployment
The chief method of deployment of Greek fire, which sets it apart from similar substances, was its projection through a tube ( siphōn), for use aboard ships or in sieges. Portable projectors ( cheirosiphōnes, χειροσίφωνες) were also invented, reputedly by Emperor Leo VI. The Byzantine military manuals also mention that jars ( chytrai or tzykalia) filled with Greek fire and wrapped with tow and soaked in the substance were thrown by catapults, while pivoting cranes ( gerania) were employed to pour it upon enemy ships. The cheirosiphōnes especially were prescribed for use at land and in sieges, both against and against defenders on the walls, by several 10th-century military authors, and their use is depicted in the of Hero of Byzantium. The Byzantine usually had a siphōn installed on their prow under the , but additional devices could also be placed elsewhere on the ship. Thus in 941, when the Byzantines were facing the vastly more numerous Rus' fleet, siphōns were placed also amidships and even astern.


Projectors
The use of tubular projectors (σίφων, siphōn) is amply attested in the contemporary sources. Anna Komnene gives this account of beast-shaped Greek fire projectors being mounted to the bow of warships:
As he the knew that the were skilled in sea warfare and dreaded a battle with them, on the prow of each ship he had a head fixed of a lion or other land-animal, made in brass or iron with the mouth open and then gilded over, so that their mere aspect was terrifying. And the fire which was to be directed against the enemy through tubes he made to pass through the mouths of the beasts, so that it seemed as if the lions and the other similar monsters were vomiting the fire.

Some sources provide more information on the composition and function of the whole mechanism. The Wolfenbüttel manuscript provides the following description:

...having built a furnace right at the front of the ship, they set on it a copper vessel full of these things, having put fire underneath. And one of them, having made a bronze tube similar to that which the rustics call a squitiatoria, "squirt," with which boys play, they spray it at the enemy.

Another, possibly first-hand, account of the use of Greek fire comes from the 11th-century Yngvars saga víðförla, in which the Ingvar the Far-Travelled faces ships equipped with Greek fire weapons:

They began blowing with smiths’ bellows at a furnace in which there was fire and there came from it a great din. There stood there also a brass or tube and from it flew much fire against one ship, and it burned up in a short time so that all of it became white ashes...
The account, albeit embellished, corresponds with many of the characteristics of Greek fire known from other sources, such as a loud roar that accompanied its discharge. These two texts are also the only two sources that explicitly mention that the substance was heated over a furnace before being discharged; although the validity of this information is open to question, modern reconstructions have relied upon them.

Based on these descriptions and the Byzantine sources, John Haldon and Maurice Byrne designed a hypothetical apparatus as consisting of three main components: a bronze pump, which was used to pressurize the oil; a brazier, used to heat the oil (πρόπυρον, propyron, "pre-heater"); and the nozzle, which was covered in bronze and mounted on a swivel (στρεπτόν, strepton). The brazier, burning a match of linen or flax that produced intense heat and the characteristic thick smoke, was used to heat oil and the other ingredients in an airtight tank above it, a process that also helped to dissolve the resins into a fluid mixture. The substance was pressurized by the heat and the use of a force pump. After it had reached the proper pressure, a valve connecting the tank with the swivel was opened and the mixture was discharged from its end, being ignited at its mouth by a flame. The intense heat of the flame made necessary the presence of heat shields made of iron (βουκόλια, boukolia), which are attested in the fleet inventories.

The process of operating Haldon and Byrne's design was fraught with danger, as the mounting pressure could easily make the heated oil tank explode, a flaw which was not recorded as a problem with the historical fire weapon. In the experiments conducted by Haldon in 2002 for the episode "Fireship" of the television series Machines Times Forgot, even modern welding techniques failed to secure adequate insulation of the bronze tank under pressure. This led to the relocation of the pressure pump between the tank and the nozzle. The full-scale device built on this basis established the effectiveness of the mechanism's design, even with the simple materials and techniques available to the Byzantines. The experiment used crude oil mixed with wood resins, and achieved a flame temperature of over and an effective range of up to .For a detailed description, cf. An interesting characteristic displayed during these tests was that, contrary to expectations due to the flame's heat, the stream of fire projected through the tube did not curve upwards but downwards, as the fuel was not completely vaporized as it left the nozzle. This fact is important because medieval galleys had a low profile, and a high-arcing flame would miss them entirely.


Hand-held projectors
The portable cheirosiphōn ("hand- siphōn"), the earliest analogue to a modern , is extensively attested in the military documents of the 10th century, and recommended for use in both sea and land. They first appear in the Tactica of emperor Leo VI the Wise, who claims to have invented them. Subsequent authors continued to refer to the cheirosiphōnes, especially for use against ; Nikephoros II Phokas also advises their use in field armies, with the aim of disrupting the enemy formation. Although both Leo VI and Nikephoros Phokas claim that the substance used in the cheirosiphōnes was the same as in the static devices used on ships, Haldon and Byrne consider that the former were manifestly different from their larger cousins, and theorize that the device was fundamentally different, "a simple syringe that squirted both liquid fire (presumably unignited) and noxious juices to repel enemy troops." The illustrations of Hero's Poliorcetica show the cheirosiphōn also throwing the ignited substance.


Grenades
In its earliest form, Greek fire was hurled onto enemy forces by firing a burning cloth-wrapped ball, perhaps containing a flask, using a form of , most probably a seaborne variant of the Roman light catapult or onager. These were capable of hurling loads of around a distance of .


Effectiveness and countermeasures
Although the destructiveness of Greek fire is indisputable, it did not make the invincible. It was not, in the words of naval historian John Pryor, a "ship-killer" comparable to the , which, by then, had fallen out of use. While Greek fire remained a potent weapon, its limitations were significant when compared to more traditional forms of artillery: in its siphōn-deployed version, it had a limited range, and it could be used safely only in a calm sea and with favorable wind conditions.

The Muslim navies eventually adapted themselves to it by staying out of its effective range and devising methods of protection such as felt or hides soaked in vinegar.

Nevertheless, it was still a decisive weapon in many battles. John Julius Norwich wrote: "It is impossible to exaggerate the importance of Greek fire in Byzantine history."Norwich, John Julius (1991) Byzantium: The Apogee, London: BCA, p. 151


In literature
  • In 's 1958 play The Brass Butterfly, adapted from his novella Envoy Extraordinary, the Greek inventor Phanocles demonstrates explosives to the Roman Emperor. The Emperor decides that his empire is not ready for this or for Phanocles's other inventions and sends him on "a slow boat to China".
  • In 's stage play Honour Bright (1960), the crusader Godfrey of Ware returns with a casket of Greek Fire given to him by an old man in Athens.
  • In 's Greek storyline, Greek Fire is described as being a volatile green liquid. When it explodes, all of the substance is spread out over an area and burns continuously. It is very strong and dangerous.
  • In C. J. Sansom's historical mystery novel Dark Fire, sends the lawyer Matthew Shardlake to recover the secret of Greek fire, following its discovery in the library of a dissolved London monastery. “A wherry across the Thames” The Guardian, 6 November 2004.
  • In 's sci-fi novel Timeline, Professor Edward Johnston is stuck in the past in 14th-century Europe, and claims to have knowledge of Greek fire.
  • In 's novel The Dark Angel, some old men who are the last ones who know the secret of Greek fire are mentioned as present in the last Christian services held in before the Fall of Constantinople. The narrator is told that in the event of the city's fall, they will be killed so as to keep the secret from the Turks.
  • In George R. R. Martin's fantasy series of novels A Song of Ice and Fire, and its television adaptation Game of Thrones, wildfire is similar to Greek fire. It was used in naval battles as it could remain lit on water, and its recipe was closely guarded.


In popular culture
  • Greek fire was used by 's ship, the Queen Anne's Revenge, in the 2011 film .
  • An application of Greek fire is shown in the 2011 video game when the main character, Ezio Auditore, escapes from the port of using a hand projector located on an .


See also
  • List of Byzantine inventions
  • List of flamethrowers
  • List of lost inventions
  • Archimedes' heat ray


Notes

Citations

Sources
  • Karatolios K., Greek Fire and its contribution to Byzantine might, translated by Leonard G. Meachim (Mytilene 2013)
  • Spears, W.H. Jr. (1969). Greek Fire: The Fabulous Secret Weapon That Saved Europe.
  • Thucydides, History of the Peloponnesian War, translated by Rex Warner; with an introduction and notes by M.I. Finley (London 1972)
  • "The Rise of Gawain, Nephew of Arthur (De ortu Waluuanii)," ed. Mildred Leake Day, in Wilhelm, James J. (1994). The Romance of Arthur. New York: Garland. pp. 369–397.


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time